恩德萨太阳能屋
The Endesa Pavilion
2014-10-22 15:51:09    | keywords: 恩德萨  太阳能  能源  数字化  技术 
恩德萨太阳能屋
  • 最新工作 Latest Jobs
     

Courtesy of Institute for Advanced Architecture of Catalonia (IAAC). 感谢IAAC的投稿,90degree版权所有,不得转载。
 
 
信息时代的相关数字化技术正在不断影响着传统建筑结构的改变与转型,而二者之间的关联则需要依靠全新且合理化的相应设计理念进行维系。当代的建筑结构乃至城市体系都与数字化世界有着密不可分的联系,即电子系统语言与实物系统语言之间的彼此配合和相互依存。当代建筑只具备传统的居住功能及稳固性是远远不足的,更应注重建筑内在的人体体验及环境等因素。
 
恩德萨太阳能屋(IAAC设计项目,主设计师:罗德里戈·卢比奥、米格尔·格雷罗)是一座能量自供式太阳能样板构筑体。它安置于巴塞罗纳奥林匹克码头上的2012年智能城市博览世界大会场地内。其建造安装后的一年多时间里,都被用作能量控制室,以监控和测试若干相关智能电源管理项目。
 
该太阳能屋是首个以1:1比例安装建造的木质太阳光跟踪式外墙系统样板构筑体,适用于监测不同尺度及纬度的各类项目。其适应性模块化系统的建立以参数化建模与数字化建造为基础,并对相关规则系统进行有序编码,以迎合当地实际情况下的几何尺度优化。整个太阳能屋的构造系统用以整合各种主观与客观策略、传统知识与尖端技术,以及当地实况与全球逻辑概况等因素……,是一个可读取并生成周边可读化能量元素的太阳能建筑外墙集合装置。
 
凭借对能源系统自供式运作及相应信息技术的长期综合研究,恩德萨太阳能屋旨在通过太阳光自然变化过程与数字化进程的有效融合,实现整个构筑体本身的机械化运转。太阳能屋充分吸收太阳能量,并以相应的几何形式记录周期性太阳运行轨迹。20世纪有一句著名的流行语:“形式服从功能”,而到了如今的21世纪,这句流行语便演变为:“形式服从能量”。
 
作为样板构筑体,该太阳能屋对传统建筑产业与最新数字化建造技术相结合的可能性进行了相应研究。每个建筑立面模块都使用参数化设计工具进行准确计算与建造,并应用计算机数控铣床对微层状木板进行组合、装配、调运,进而进行插入式组装,形成最终的太阳能屋构筑体,整个建造过程历时5周。传统建筑产业往往需要冗长而繁复的建造过程,而迎合大规模定制式需求的新型建造技术,则只需要相互交织于一个连续性的简易工作流程中即可。
 
恩德萨太阳能屋并不是一个封闭式的科研产品,而是一个完善的构造系统,其建造目的并不是以日常功用建筑为出发点,而是作为一个开放式的多尺度提案性研究构筑体投入使用。它实质上是基于一组特定数学规则和逻辑之上的建筑立面集合体,适应于任何地点或材质的建筑需求,便于实行施工现场组装,并与当地的实际气候、地理等条件相吻合。一个相对完善的构建系统依赖于其适应性而并非其重复性,并且需要适用于周边环境的适应性数据编码与之相匹配。
 
事实上,恩德萨太阳能屋可视为一组以巴塞罗纳当地环境为适应对象的适应性数据编码,以迎合当地不同情况下的不同需求。整个设计依附于一个简单的逻辑进行推动和运转。每个建筑立面组件的相对定位,加之不同季节中的太阳运行轨迹,共同限定着整个构筑体几何形态的形成(即其开放性、深度性以及镶板的倾斜度)。
 
每个组件都是依全球性标准而定义、设计的,但其不同的组装方式却可因地制宜,解决当地具体问题,每一模块的逐个计算都遵循同样的共享性准则(即拓扑关系)。每个组件生成其自身能量,对太阳辐射、自然光以及室内外人造照明、能源储备空间和隔热设施进行智能调控……在遵循单一共享逻辑的前提下,每个组件都可对所有建筑客体的相应需求进行妥善调节。
 
由于所要应对的实际光源等情况都略有差异,因此每个模块也各不相同。而这种数字化立面模块有机反应的灵活度,在传统建筑模块系统和常规的建造手段操作中都是不可想象的。
 
恩德萨太阳能屋也可看作是一个实验室,它挑战着大规模定制与大规模生产技术相结合的成功与否。就某种层面而言,它也是一个综合体,得益于一系列数字建造技术的应用,在产业规模化与工艺适应性之间的磨合与提升方面寻求着可能性。
 
一体化设计及建造无疑拥有其快速性和灵活度。21世纪对于建筑灵活度的要求,可能更多是指有效的适应性,而不再是浅显而模糊的建造概念。
 
该太阳能屋是一个完全依靠太阳能自行运作的纯能源自供式智能构筑体。然而,智能化城市的建设却并不仅仅只依赖于智能建筑的建造。所谓智能城市,其产生的能量必须是所消耗能量的140%,且必须统一使用充电式电动汽车和电动自行车。恩德萨太阳能屋所产生的剩余能源足以供应一个传统(消耗型)房屋的能量消耗。
 
此外,该样板构筑体还曾应用于能源电网的数字化管理实验研究中,通过对能量流进行有效的数字化操控,以及对交叉性实时数据的科学分析,进而制定出相应决策。建筑能源系统物联网[1]的有效建立为物理世界的云操作提供了灵活性。
 
网络化、协作化与交互性是高凝聚性的灵活系统运作中必不可少的元素。因此,具备内在开放式分享特性的新型信息技术是这种系统的重要载体。
 
尽管建筑设计和施工技术都在不断进步,但离开了对城市规模客观影响的实质性思考,一切也不过是纸上谈兵而已。恩德萨样板构筑体就是一个与城市客观影响因素密切联系的建造方案。由于城市土地上的每一个建造举动都意味着对多种环境因素的操纵,并与诸如能源、交通、物流、信息等众多信息流和信息网络紧密连接,进而生成具有潜在资源消耗与生产能力的全新居住及活动场所。因此,在区域及城市策略制定与建筑施工过程中,必须注重建筑管理和规划全新形式相关知识的及时同步更新,以形成多尺度思维,有助于力学、能量、信息传递和连续适应性之间相互转换的深入理解。
 
恩德萨太阳能屋以及IAAC的另一个智能化能源自供式1:1比例构筑体“微观装配实验室住宅”,都是遵循指定场地的特定太阳运行轨迹而形成的参数化设计住宅式构筑体。通过柔性太阳能电池对其进行最佳形态调节,此类住宅式构筑体所能够产生的能量是其需消耗能量的两倍。“微观装配实验室住宅”是由相关研究人员和学生在2010年的马德里太阳能十项全能竞赛中设计建造的全数字化构筑体,并荣获此次竞赛的公众推选奖。
 
As Information Era Technologies and their impacts on architecture change, their relationship calls for new or adapted concepts, where Buildings and Cities seamlessly interwine with digital content and where the language of electronic connections tie in with the language of physical connections. Architecture cannot be just inhabited and rigid, but users and the environment should integrate with it. 
 
The Endesa Pavilion (project by IAAC, design team Rodrigo Rubio and Miguel Guerrero) is a self-sufficient solar prototype installed at the Barcelona Olympic Port within the framework of the BCN Smart City Expo World Congress (SCEWC 2012). Over a period of one year was to be used as a control room for the monitoring and testing several projects related to intelligent power management. 
 
The Pavilion is the first 1:1 prototype of a wooden solar-tracking façade system applicable to different scales and latitudes. An adaptive modular system based on parametric modeling and digital fabrication. An algorithm coded to optimize geometries depending on local conditions. A constructive system that aims to integrate passive strategies with active ones, traditional knowledge with cutting-edge technology, local conditions with global logics…The Endesa Pavilion is a skin that reads and renders readable the surrounding energetic conditions.
 
It is a result of a long combined research on self-sufficiency and information technologies, aiming to work on mechanisms that merge natural and digital processes. The pavilion takes the energy from the sun, and it’s geometry describes that of the seasonal sun paths. From the famous XX-century mantra “form follows function” to its XXI century version: “form follows energy”. 
 
As a prototype, the pavilion researchs the possibilities of combining traditional industry with the latest digital fabrication techniques. Each façade module is calculated and generated using parametric design tools, is fabricated using CNC milling on microlaminated wood panels, pre-assembled, transported and “plugged-in” to the structure, all in a process of five weeks. Conventional industries, used to mass production processes, and new technologies, adapted to mass customization requirements, are inter-weaved in a single continuous workflow. 
 
The pavilion is not a closed product but a construction system. It is not intended as a definitive and finished icon but an open and multi-scalar proposal. It is a façade system based on a set of mathematical rules and logics ready for export and adaptable to any location or material, ready to be integrated into the local conditions as well as locally fabricated. 
 
A constructive system based on adaptation and not on repetition. A code that is able to read the context conditions and respond to them. 
 
In fact the Endesa Pavilion is the Barcelona version of an adaptative code able to be applied (grafted) in different situations with different demands. A simple logic drives the whole design. The relative position of each façade component with the different seasonal sun-paths defines its geometry (openness, deepness and paneling inclinations). 
 
Each component is defined globally but resolved locally, calculated individually (module by module) following the same shared rules (topological relations). Each component generates its own energy, controls its own sun radiation, natural light and artificial interior and exterior illumination, storage, insulation… Each component contains and resolves locally all architectural requirements following a single shared logic. 
 
Each module is different because is responding to slightly different conditions. And this level of organic responsiveness was something unthinkable with traditional modeling systems and conventional means of fabrication.
 
The Endesa Pavilion is a laboratory that challenges the alliance between mass customization and mass production techniques. It is a hybrid, made possible thanks to the use of digital fabrication technologies, between industrial scale and craft adaptability.
The integration design-to-production was fast and resilient. Flexibility, during the XXIst century, might be more related to responsive adaptability and no longer to the flat and indistinct.
 
The Pavilion is now a totally self-sufficient building, working exclusively with sun energy. But smart cities aren’t made just out of smart buildings. It generates 140% of the energy it consumes, uses electric cars as batteries and charges a set of electrical bikes. The surplus of production of Endesa Pavilion could feed the consumption of a conventional (consumer) house. 
 
The prototype was used to perform experimental research on the digital management of energy grids. By being able to digitally control the flows of energy, crossing real-time data with decision making. The internet of energy [1] brings the flexibility of a Cloud to the physical world. 
 
Networking, collaborating and interchanging are essential means to make a cohesive resilient system. Hence new informational technologies, with their inherent open participatory character, are crucial tools. 
 
The advances in building design and construction, however cannot leave the urban scale unaffected. The Endesa prototype is a building strategy with urban effects. And this happens because each action on the territory implies a manipulation of multiple environmental forces, connected to numerous informational flows and networks such as energy, transport, logistics and information, generating new inhabitable and responsive nodes with the potential to use and produce resources. Territorial and urban strategies and building operations must therefore be coordinated processes that extend architectural knowledge to new forms of management and planning, in which a multiscalar thinking also entails an understanding of shifting dynamics, energy and information transmission and continuous adaptation.
 
On a broader scale the IAAC agenda on Smart and Self Sufficient Buildings include outcomes such as the 1:1 scale construction of the Fab Lab House as well as the Endesa Pavilion, both parametrically designed houses applying form following the data of the site specific solar path. The Fab Lab House was entirely digitally fabricated by a group of researchers and students in 2010 in the occasion of the Solar Decathlon held in Madrid, winning the people’s choice award. The house is able to generate twice as much the energy that it needs to consume, through flexible solar cells adjusted to the optimum form of the building. 
 
\
恩德萨太阳能屋西南建筑外墙及电动自行车
Endesa Pavilion. Southwest façade and electric bike
Photo by: Adrià Goula
 
\
建筑一体化自然逻辑的具体体现:由太阳能光伏板组成的建筑西南外墙
Natural logics of integration; Fotovoltaic west façade
Photo by: Adrià Goula
 
\
通过环氧氯丙烷系统建立起的屋内有效电源环境分析图示
Grasshopper environmental analysis through Geco
Image by: IAAC
 
\
夏季建筑性能解析模型图示
Ecotect summer modeling
Image by: IAAC

\
冬季建筑性能解析模型图示
Ecotect winter modeling
Image by: IAAC
 
\
恩德萨太阳能屋系统组件
Endesa Pavilion component elements
Image by: IAAC
 
\
恩德萨太阳能屋部件装配
Endesa Pavilion component assembly
Photo by: Miguel Guerrero
 
\
恩德萨太阳能屋电气化生态系统
Endesa Pavilion electrical ecosystem
Photo by: Adrià Goula
 
\
微观装配实验室住宅
Fab Lab House
Photo by: Adrià Goula

\
恩德萨太阳能屋毗邻的滨水景致
Endesa Pavilion coast-line view
Photo by: Adrià Goula

\
Photos by Adrià Goula

\
Photos by Adrià Goula

\
Photos by Adrià Goula

\
Photos by Adrià Goula

\
Photos by Adrià Goula

\
Photos by Adrià Goula

\
Photos by Adrià Goula

\
Photos by Adrià Goula

\
Photos by Adrià Goula

\
Photos by Adrià Goula

\
Photos by Adrià Goula

\
Photos by Miguel Guerrero

\
Photos by Miguel Guerrero

\
Photos by Miguel Guerrero

\
Photos by Miguel Guerrero

\
Photos by Miguel Guerrero

\
Photos by Miguel Guerrero

\
Photos by Miguel Guerrero

\
Photos by Miguel Guerrero

\
Photos by Miguel Guerrero

\
Photos by Miguel Guerrero

\
Photos by Miguel Guerrero

\
Photos by Miguel Guerrero

\
Photos by Miguel Guerrero

\
Photos by Miguel Guerrero

\
Photos by Miguel Guerrero

\
Photos by Miguel Guerrero

\
Photos by Miguel Guerrero

\
Photos by Miguel Guerrero

\
Photos by Miguel Guerrero

\
Photos by Miguel Guerrero

\
Photos by Miguel Guerrero

\
Photos by Miguel Guerrero

\
Photos by Miguel Guerrero


\
Photo by: IAAC

\
Photo by: IAAC
 
\
Photo by: IAAC
 
\
Photo by: IAAC

\
Photo by: IAAC

\
Photo by: IAAC

\
Photo by: IAAC

\
Photo by: IAAC

参考文献
[1] 奥维迪乌·维米森. 建筑能源系统物联网, 挪威科技工业研究院, 2011年
 
References
[1] Vermesan, Ovidiu. Internet of Energy, SINTEF, Helsinki, 2011

上一篇:巴西工业城市的生态治理
下一篇:扬子鳄的拯救

相关推荐